Syllabus

Title
4306 Statistik für Volkswirtschaft mit R
Instructors
Dr. Marcus Wurzer
Contact details
Type
PI
Weekly hours
2
Language of instruction
Deutsch
Registration
02/12/25 to 02/18/25
Registration via LPIS
Notes to the course
Dates
Day Date Time Room
Monday 03/03/25 10:00 AM - 11:30 AM LC.2.064 PC Raum
Monday 03/10/25 10:00 AM - 11:30 AM LC.2.064 PC Raum
Monday 03/17/25 10:00 AM - 11:30 AM LC.2.064 PC Raum
Monday 03/24/25 10:00 AM - 11:30 AM LC.2.064 PC Raum
Monday 03/31/25 10:00 AM - 12:00 PM LC.2.064 PC Raum
Monday 04/07/25 10:00 AM - 12:00 PM LC.2.064 PC Raum
Monday 04/28/25 10:00 AM - 12:00 PM LC.2.064 PC Raum
Monday 05/05/25 10:00 AM - 12:00 PM LC.2.064 PC Raum
Monday 05/12/25 10:00 AM - 12:00 PM LC.2.064 PC Raum
Monday 05/19/25 10:00 AM - 12:00 PM LC.2.064 PC Raum
Monday 05/26/25 10:00 AM - 11:30 AM LC.2.064 PC Raum
Monday 06/02/25 10:00 AM - 11:30 AM LC.2.064 PC Raum
Monday 06/16/25 10:00 AM - 11:30 AM LC.2.064 PC Raum
Contents
  • Einführung in R
  • Deskriptive Statistik und grafische Darstellungen: 
  1. Lagemaße (Mittelwert, Median, ...) 
  2. Streuungsmaße (Varianz, Standardabweichung, ...) 
  3. Histogramm, Kerndichteplot
  4. Bar-, Spine-, Mosaicplot 
  5. Boxplot
  6. Scatterplot (Streudiagramm)
  7. Zusammenhangsmaße (Korrelation, Pearson & Spearman)
  • Inferenzstatistik:
  1. Chi-Quadrat-Tests 
  2. Konfidenzintervalle 
  3. Odds Ratios
  4. (Binäre) logistische Regression 
  5. Dummy-Codierung kategorialer Prädiktoren
  6. (Univariate) einfache und multiple lineare Regression
  7. t-Test und einfache Varianzanalyse
  8. Mann-Whitney U-Test und Kruskal-Wallis H-Test 
  9. Varianzanalyse (Analysis of Variance, ANOVA)
Learning outcomes
In dieser Lehrveranstaltung lernen Sie grundlegende statistische Techniken kennen, die Sie im Bereich Ökonometrie und Volkswirtschaftslehre benötigen. Alle vorgestellten Methoden werden anhand praktischer Beispielen vertieft, so dass Sie nach der LV im Stande sind, Analysen mithilfe der Statistik Software R durchzuführen.
Attendance requirements
  • Prüfungsimmanente Lehrveranstaltungen (PI) haben Anwesenheitspflicht / Mindestanwesenheit:  80% . Im Falle einer Abwesenheit ist die/der LV-Leiter/in bitte (nach Möglichkeit) vorab zu informieren!
Teaching/learning method(s)

Die Lehrveranstaltung findet wöchentlich statt. Der Stoff wird vom Lehrveranstaltungsleiter in Theorieeinheiten vorgetragen und in Datensätzen vertieft. Die Leistung der Studierenden wird anhand diverser Übungsbeispiele sowie einer Prüfung beurteilt (s. u.).

Assessment
  • Nicht mehr als zweimaliges unentschuldigtes Fernbleiben.
  • Aktive Teilnahme an den Computerübungen (8 Bonuspunkte für die Mitarbeit möglich).
  • 4 Gruppenübungen mit insgesamt 10 Beispielen à 5 Punkte, d.h. 50 Punkte.
  • Eine Multiple-Choice-Abschlussprüfung mit 20 Punkten.
  • 6x ein Quiz mit je 2 Punkten. Die besten 5 Quizzes werden gewertet, d.h. 10 Punkte.
  • Von den 80 Punkten insgesamt müssen für eine positive Benotung mindestens 70% erreicht werden.

 

Readings

Please log in with your WU account to use all functionalities of read!t. For off-campus access to our licensed electronic resources, remember to activate your VPN connection connection. In case you encounter any technical problems or have questions regarding read!t, please feel free to contact the library at readinglists@wu.ac.at.

Availability of lecturer(s)
marcus.wurzer@wu.ac.at
Last edited: 2024-11-07



Back